Human |
Updated May 2024
NAT1 Allele
(Haplotype)a,b |
Nucleotide Change(s) and rs Identifier(s) |
Amino Acid Change(s) |
Phenotypec |
References |
NAT1*4 |
Reference |
Reference |
Reference |
|
NAT1*3 |
c.*222C>A |
|
|
|
NAT1*5 |
c.350_351inv c.497_499inv c.*11A>G c.*103del c.*232del |
p.Arg117Thr p.Arg166_Glu167delinsThrGln |
|
|
NAT1*10 |
c.*215T>A c.*222C>A |
|
Increased
activity |
|
NAT1*11A |
c.-344C>T c.-40A>T c.445G>A c.459G>A c.640T>G c.(*192_*217)del(9) c.*222C>A |
p.Val149Ile p.Thr153= p.Ser214Ala |
Increased
activity |
|
NAT1*11B |
c.-344C>T c.-40A>T c.445G>A c.459G>A c.640T>G c.(*192_*217)del(9) |
p.Val149Ile p.Thr153= p.Ser214Ala |
Increased
activity |
|
NAT1*11C |
c.-344C>T c.-40A>T c.459G>A c.640T>G c.(*192_*217)del(9) c.*222C>A |
p.Thr153= p.Ser214Ala |
Increased
activity |
|
NAT1*14A |
c.560G>A c.*215T>A c.*222C>A |
p.Arg187Gln |
Decreased activity (Lower than |
|
NAT1*14B |
c.560G>A |
p.Arg187Gln |
Decreased activity (Lower than |
|
NAT1*15 |
c.559C>T |
p.Arg187Ter |
No activity (Truncated protein) |
|
NAT1*16 |
c.*216_*218dup c.*222C>A |
|
|
|
NAT1*17 |
c.190C>T |
p.Arg64Trp |
Decreased activity (Lower than |
|
NAT1*18A |
c.(*192_*214)del(3) c.*215T>A c.*222C>A |
|
|
|
NAT1*18B |
c.(*192_*214)del(3) |
|
|
|
NAT1*19A |
c.97C>T |
p.Arg33Ter |
No activity (Truncated protein) |
|
NAT1*19B |
c.97C>T c.190C>T |
p.Arg33Ter p.Arg64Trp |
No activity (Truncated protein) |
|
NAT1*20 |
c.402T>C |
p.Pro134= |
Equivalent to |
|
NAT1*21 |
c.613A>G |
p.Met205Val |
Equivalent to |
|
NAT1*22 |
c.752A>T |
p.Asp251Val |
Decreased activity (Lower than |
|
NAT1*23 |
c.777T>C |
p.Ser259= |
Equivalent to |
|
NAT1*24 |
c.781G>A |
p.Glu261Lys |
Equivalent to |
|
NAT1*25 |
c.787A>G |
p.Ile263Val |
Equivalent to |
|
NAT1*26A |
c.(*192_*217)ins(3) c.*222C>A |
|
|
|
NAT1*26B |
c.(*192_*217)ins(3) |
|
|
|
NAT1*27 |
c.21T>G c.777T>C |
p.Leu7= p.Ser259= |
Equivalent to |
|
NAT1*28 |
c.(*192_*217)del(6) |
|
|
|
NAT1*29 |
c.*215T>A c.*222C>A c.*152del |
|
|
|
NAT1*30 |
c.445G>A |
p.Val149Ile |
|
(a) Human
(b) The reference
gene sequence (allele NAT1*4) is published in Genbank Accession Number
AJ307007.1. SNPs should be identified by designating "A" of the
(c) Phenotype
assignments reflect most current research, but are not necessarily consistent
across all studies. Phenotypes may vary with organ/tissue and may be dependent
upon other endogenous and environmental factors. Evidence exists for
heterogeneity within the “decreased activity” phenotype. Although additional SNPs have been identified outside the open reading
frame, they will not be named until a functional effect is observed.
For new
submissions or enquiries, please contact Dr. Sotiria Boukouvala (sboukouv@mbg.duth.gr).
[1]
Vatsis, K.P.
and Weber, W.W. Structural heterogeneity of Caucasian N-acetyltransferase at the
[2]
Blum, M.,
Grant, D.M., McBride, W., Heim, M. and Meyer, U.A. Human arylamine N-acetyltransferase genes: isolation,chromosomal localization, and functional expression.
[3]
Ohsako, S.
and Deguchi, T. Cloning and expression of cDNAs for polymorphic and
monomorphic arylamine N-acetyltransferases from human liver. J. Biol. Chem. 265: 4630-4634, 1990.
[4]
Doll, M.A.,
Jiang, W., Deitz, A.C., Rustan, T.D. and Hein, D.W. Identification of a
novel allele at the human
[5]
Hughes, N.C.,
Janezic, S.A., McQueen, K.L., Jewett, M.A.S., Castranio, T., Bell, D.A. and
Grant, D.M. Identification and characterization of variant alleles of human
acetyltransferase
[6]
Payton, M.A.
and Sim, E. Genotyping human arylamine N-acetyltransferase
Type 1 (
[7]
Hubbard, A.,
Moyes, C., Wyllie, A.H., Smith, C.A.D. and Harrison, D.J. N-acetyltransferase 1: two polymorphisms
in coding sequence identified in colorectal cancer patients. Br. J. Cancer 77: 913-916, 1998.
[8]
de Leon, J.H., Vatsis, K.P. and Weber, W.W.
Characterization of naturally occurring and recombinant human N-acetyltransferase variants encoded by
[9]
Butcher,
N.J., Ilett, K.F. and Minchin, R. F. Functional polymorphism of the human
arylamine N-acetyltransferase type 1
gene caused by C190T and G560A mutations. Pharmacogenetics 8:
67-72, 1998.
[10]
Lin, H.J.,
Probst-Hensch, N.M., Hughes, N.C., Sakamoto, G.T., Louie, A.D., Kau, I.H., Lin,
B.K., Lee, D.B., Lin, J., Frankl, H.D., Lee, E.R., Hardy, S., Grant, D.M. and
Haile, R.W. Variants of N-acetyltransferase
[11]
Deitz, A.C., Doll, M.A., Fretland, A.J. and Hein, D.W. Homo sapiens N-acetyltransferase
[12]
Deitz, A.C., Doll, M.A., Fretland, A.J. and Hein, D.W. Homo
sapiens N-acetyltransferase
[13]
Deitz, A.C., Fretland, A.J., Leff, M.A. and Hein, D.W. Homo sapiens N-acetyltransferase-1 NAT1 gene (NAT1*26A allele), complete cds. Genbank AF071552,
1998.
[14]
Deitz, A.C., Fretland, A.J., Leff, M.A., Doll, M.A. and Hein, D.W.
Homo sapiens N-acetyltransferase-1 NAT1 gene, (NAT1*26B allele), complete cds. Genbank AF067408,
1998.
[15]
Smelt,
V.A., Upton, A., Adjaye, J., Payton, M.A., Boukouvala, S., Johnson, N., Mardon,
H.J. and Sim, E. Expression of arylamine N-acetyltransferases in pre-term placentas and in human
pre-implantation embryos. Hum. Mol.
Gen. 9: 1101-1107, 2000.
[16]
Lo-Guidice, J.M., Marez, D., Barat, F., Spire, C., Chevalier, D.
and Broly, F. Human N-acetyltransferase
1 (
[17]
Lo-Guidice, J.M., Marez, D., Barat, F., Spire, C., Chevalier, D.,
and Broly, F. Human N-acetyltransferase
1 (
[18]
Yang, M.,
Katoh, T., Delongchamp, R., Ozawa, S., Kohshi, K. and Kawamoto, T.
Relationship between
[19]
Johnson, N., Bell, P.,
Jonovska, V., Budge, M. and Sim, E. NAT
gene polymorphisms and susceptibility to Alzheimer's disease: identification of
a novel
[20]
Lo-Guidice, J.M., Allorge, D., Chevalier,
D., Debuysere, H., Fazio, F., Lafitte, J.J. and Broly, F. Molecular
analysis of the N-acetyltransferase 1
gene (
[21]
Cascorbi, I., Roots, I. and Brockmoller, J. Homo sapiens arylamine
N-acetyltransferase 1 (
[22]
Sekine, A.,
Saito, S., Iida, A., Mitsunobu, Y., Higuchi, S., Harigae, S. and Nakamura Y.
Identification of single-nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes
[23]
Badawi,
A.F., Bell, D.A., Hirvonen, A. and Kadlubar, F. Role of aromatic amine
acetyltransferases,
[24]
Bell, D.A.,
Badawi, A.F., Lang, N.P., Ilett, K.F., Kadlubar, F.F. and Hirvonen, A. Polymorphism
in the
[25]
Grant, D.M.,
Hughes, N.C., Janezic, S.A., Goodfellow, G.H., Chen, H.J., Gaedigk, A., Yu, V.L
and Grewal, R. Human
acetyltransferase polymorphisms. Mutat. Res. 376: 61-70,
1997.
[26]
Hein, D.W., McQueen, C.A.,
Grant, D.M, Goodfellow, G.H., Kadlubar, F.F. and Weber, W.W.
Pharmacogenetics of the arylamine N-acetyltransferases:
A symposium in honor of Wendell W. Weber. Drug Metab. Dispos. 28: 1425-1432, 2000.
[27]
Fretland,
A.J., Doll, M.A., Leff, M.A. and Hein, D.W. Functional characterization of
nucleotide polymorphisms in the coding region of N-acetyltransferase 1 (
[28]
Butcher,
N.J., Boukouvala, S., Sim, E. and Minchin, R.F. Pharmacogenetics of the
arylamine N-acetyltransferases. Pharmacogenomics J. 2: 30-42, 2002.
[29]
Hein, D.W.
Molecular genetics and function of
[30]
Zhu, Y. and Hein, D.W. Functional
effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1. Pharmacogenomics
J. 8: 339-48, 2008.
[31]
Vaziri, S.A.J., Hughes,
N.C., Sampson, H., Darlington, G., Jewett, M.A.S. and Grant, D.M. Variation
in enzymes of arylamine pro-carcinogen biotransformation among bladder cancer
patients and control subjects. Pharmacogenetics 11: 7-20, 2001.
[32]
Boukouvala, R and Fakis, G. Arylamine N-acetyltransferases: What
we learn from genes and genomes. Drug
Metab. Rev. 37: 511-564, 2005.
[33]
Sim, E., Westwood, I. and
Fullam, E. Arylamine
N-acetyltransferases. Expert Opin. Drug Metab. Toxicol. 3: 169-184, 2007.
[34]
Zhu, Y., States, J.C., Wang, Y. and Hein, D.W. Functional effects of genetic polymorphisms in the N-acetyltransferase 1 coding and 3’ untranslated regions. Birth Defects Res. (Pt A): Clin. Mol.
Teratol. 91: 77-84, 2011.
[35]
Agundez, J. (Computationally reconstructed
haplotypes from sequencing analysis – unpublished)
[36]
Wang, D., Para, M.F., Koletar,
S.L. and Sadee W. Human N-acetyltransferase
1 *10 and *11 alleles increase protein expression through distinct mechanisms
and associate with sulfamethoxazole-induced hypersensitivity. Pharmacogenet
Genomics 21:652-64, 2011.
[37]
Millner, L.M., Doll, M.A.,
Stepp, M.W., States, J.C. and Hein, D.W. Functional analysis of arylamine N-acetyltransferase 1 (NAT1) NAT1*10 haplotypes in a complete NATb mRNA construct. Carcinogenesis
33:348-355, 2012.
[38]
Mascarenhas, R., Pietrzak, M.,
Smith, R.M., Webb, A., Wang, D., Papp, A.C., et al. Allele-selective
transcriptome recruitment to polysomes primed for translation: Protein-coding
and noncoding RNAs, and RNA isoforms. PLoS One 10:e0136798, 2015.
[39]
Hein, D.W., Fakis, G.,
Boukouvala, S. Functional expression of human
arylamine N-acetyltransferase NAT1*10 and NAT1*11 alleles: a mini review. Pharmacogenet.
Genomics 28:238-244, 2018.