Human NAT2 alleles (haplotypes) |
Updated May 2024
IMPORTANT NOTICE
In March 2024, PharmVar announced the launch of the
new NAT2 webpage (https://www.pharmvar.org/gene/NAT2)
As a result, many NAT2
alleles have now been transitioned into the new PharmVar database (https://www.pharmvar.org/) and updated accordingly on PharmGKB (https://www.pharmgkb.org/)
Important changes have been made to NAT2 nomenclature during
transition to the new allele definitions on PharmVar:
·
The NAT2 reference allele was
changed
The new reference allele is now catalogued as NAT2*1 by PharmVar and corresponds to
legacy allele NAT2*12A (GRCh38 RefSeq NG_012246.1).
·
NAT2*4 is no longer considered as the reference allele in genomic studies
The legacy NAT2*4 reference allele of
sequence X14672.1 is now considered a variant by PharmVar.
Although sequence X14672.1 will no longer be used as a genomic reference,
it is still appropriate to use when comparing the enzymatic or structural
properties of polymorphic NAT2 proteins.
· Star alleles have been renamed by PharmVar
· Not all previously defined star alleles have been transferred to
PharmVar
In the case of haplotypes where the available
evidence from the literature was deemed insufficient to support confident
allele definition, those haplotypes were not transferred to PharmVar, but they
will remain here as legacy alleles.
· The requirements for new allele definition have changed
·
During the course of updating NAT2 nomenclature,
the PharmVar NAT2 gene expert panel (https://www.pharmvar.org/expert-panels)
has been able to confirm several of the former
haplotypes, while also identifying new ones. We encourage submissions of
novel haplotypes for star allele definition, as well as for existing
definitions to verify them for transition to PharmVar.
See
PharmVar and PharmGKB announcements for more information
For new submissions of NAT2 alleles, please contact the
PharmVar directly (https://www.pharmvar.org/submission)
For enquiries regarding transition from the legacy to the new NAT2 nomenclature, or to validate
alleles that have not been transitioned to PharmVar yet, please contact the
following persons:
Chair of the NAT committee: Dr. Sotiria Boukouvala (sboukouv@mbg.duth.gr)
PharmVar Director: Dr. Andrea Gaedigk (agaedigk@pharmvar.org)
The current page will remain active
as a record of the legacy nomenclature used in the literature before, but it will
no longer be updated with new NAT2
alleles
See the PharmVar
page for newly designated NAT2 alleles
NAT2 Allele
(Haplotype)a,b |
Nucleotide Change(s) and rs Identifiersc |
Amino Acid Change(s) |
Phenotyped |
References |
Transitioned to PharmVar? |
|
NAT2*4 |
Legacy reference allele |
None |
Rapid |
YES |
||
|
|
|||||
c.341T>C (rs1801280) c.481C>T (rs1799929) |
p.Ile114Thr p.Leu161= |
Slow |
YES |
|||
NAT2*5AAf |
c.82C>T c.341T>C (rs1801280) c.481C>T (rs1799929) |
p.Leu28Phe p.Ile114Thr p.Leu161= |
|
NO |
||
NAT2*5ABf |
c.341T>C (rs1801280) c.481C>T (rs1799929) c.609G>T (rs45618543) |
p.Ile114Thr p.Leu161= p.Glu203Asp |
|
NO |
||
NAT2*5B |
c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Ile114Thr p.Leu161= p.Lys268Arg |
Slow |
YES |
||
NAT2*5BAf |
c.33C>A c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Gly11= p.Ile114Thr p.Leu161= p.Lys268Arg |
|
NO |
||
NAT2*5BBf |
c.341T>C (rs1801280) c.345C>T (rs45532639) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Ile114Thr p.Asp115= p.Leu161= p.Lys268Arg |
|
NO |
||
NAT2*5C |
c.341T>C (rs1801280) c.803A>G (rs1208) |
p.Ile114Thr p.Lys268Arg |
Slow |
YES |
||
NAT2*5CAf |
c.33C>A c.341T>C (rs1801280) c.803A>G (rs1208) |
p.Gly11= p.Ile114Thr p.Lys268Arg |
|
NO |
||
NAT2*5D |
c.341T>C (rs1801280) |
p.Ile114Thr |
Slow |
YES |
||
NAT2*5E |
c.341T>C (rs1801280) c.590G>A (rs1799930) |
p.Ile114Thr p.Arg197Gln |
Slow |
YES |
||
NAT2*5F |
c.341T>C (rs1801280) c.481C>T (rs1799929) c.759C>T (rs56011192) c.803A>G (rs1208) |
p.Ile114Thr p.Leu161= p.Val253= p.Lys268Arg |
Slow |
YES |
||
NAT2*5G |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Tyr94= p.Ile114Thr p.Leu161= p.Lys268Arg |
Slow |
NO |
||
NAT2*5H |
c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) c.859del |
p.Ile114Thr p.Leu161= p.Lys268Arg p.Ser287Profs*59 |
Slow |
Discontinued |
||
NAT2*5I |
c.341T>C (rs1801280) c.411A>T (rs4986997) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Ile114Thr p.Leu137Phe p.Leu161= p.Lys268Arg |
Slow |
NO |
||
NAT2*5Je |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.590G>A (rs1799930) |
p.Tyr94= p.Ile114Thr p.Arg197Gln |
Slow |
NO |
||
NAT2*5K |
c.282C>T (rs1041983) c.341T>C (rs1801280) |
p.Tyr94= p.Ile114Thr |
|
NO |
||
NAT2*5KAf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.857G>A (rs1799931) |
p.Tyr94= p.Ile114Thr p.Gly286Glu |
|
NO |
||
NAT2*5L |
c.70T>A (rs45477599) c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Leu24Ile p.Ile114Thr p.Leu161= p.Lys268Arg |
|
YES |
||
NAT2*5M |
c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) c.838G>A (rs56393504) |
p.Ile114Thr p.Leu161= p.Lys268Arg p.Val280Met |
|
NO |
||
NAT2*5N |
c.341T>C (rs1801280) c.472A>C (rs139351995) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Ile114Thr p.Ile158Leu p.Leu161= p.Lys268Arg |
|
YES |
||
NAT2*5O |
c.203G>A (rs72466458) c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Cys68Tyr p.Ile114Thr p.Leu161= p.Lys268Arg |
|
YES |
||
NAT2*5P |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.481C>T (rs1799929) c.578C>T (rs79050330) c.590G>A (rs1799930) c.803A>G (rs1208) |
p.Tyr94= p.Ile114Thr p.Leu161= p.Thr193Met p.Arg197Gln p.Lys268Arg |
|
NO |
||
NAT2*5Qf |
c.341T>C (rs1801280) c.590G>A (rs1799930) c.803A>G (rs1208) |
p.Ile114Thr p.Arg197Gln p.Lys268Arg |
|
NO |
||
NAT2*5Rf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.590G>A (rs1799930) c.803A>G (rs1208) |
p.Tyr94= p.Ile114Thr p.Arg197Gln p.Lys268Arg |
|
NO |
||
NAT2*5Sf |
c.341T>C (rs1801280) c.857G>A (rs1799931) |
p.Ile114Thr p.Gly286Glu |
|
NO |
||
NAT2*5Tf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.803A>G (rs1208) |
p.Tyr94= p.Ile114Thr p.Lys268Arg |
|
NO |
||
NAT2*5TAf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.803A>G (rs1208) c.857G>A (rs1799931) |
p.Tyr94= p.Ile114Thr p.Lys268Arg p.Gly286Glu |
|
NO |
||
NAT2*5TBf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) c.857G>A (rs1799931) |
p.Tyr94= p.Ile114Thr p.Leu161= p.Lys268Arg p.Gly286Glu |
|
NO |
||
NAT2*5Uf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.481C>T (rs1799929) c.590G>A (rs1799930) c.803A>G (rs1208) |
p.Tyr94= p.Ile114Thr p.Leu161= p.Arg197Gln p.Lys268Arg |
|
NO |
||
NAT2*5Vf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.481C>T (rs1799929) |
p.Tyr94= p.Ile114Thr p.Leu161= |
|
NO |
||
NAT2*5VAf |
c.282C>T (rs1041983) c.341T>C (rs1801280) c.481C>T (rs1799929) c.857G>A (rs1799931) |
p.Tyr94= p.Ile114Thr p.Leu161= p.Gly286Glu |
|
NO |
||
NAT2*5Wf |
c.341T>C (rs1801280) c.354T>C (rs146405047) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Ile114Thr p.Asn118= p.Leu161= p.Lys268Arg |
|
YES |
||
NAT2*5Xf |
c.341T>C (rs1801280) c.403C>G (rs12720065) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Ile114Thr p.Leu135Val p.Leu161= p.Lys268Arg |
|
Discontinued |
||
NAT2*5Yf |
c.341T>C (rs1801280) c.481C>T (rs1799929) c.622T>C (rs56387565) c.803A>G (rs1208) |
p.Ile114Thr p.Leu161= p.Tyr208His p.Lys268Arg |
|
NO |
||
NAT2*5Zf |
c.191G>A (rs1801279) c.341T>C (rs1801280) c.481C>T (rs1799929) |
p.Arg64Gln p.Ile114Thr p.Leu161= |
|
NO |
||
NAT2*5ZAf |
c.191G>A (rs1801279) c.282C>T (rs1041983) c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Arg64Gln p.Tyr94= p.Ile114Thr p.Leu161= p.Lys268Arg |
|
NO |
||
|
|
|||||
NAT2*6A |
c.282C>T (rs1041983) c.590G>A (rs1799930) |
p.Tyr94= p.Arg197Gln |
Slow |
YES |
||
NAT2*6B |
c.590G>A (rs1799930) |
p.Arg197Gln |
Slow |
YES |
||
NAT2*6C |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.803A>G (rs1208) |
p.Tyr94= p.Arg197Gln p.Lys268Arg |
Slow |
YES |
||
NAT2*6D |
c.111T>C (rs72554615) c.282C>T (rs1041983) c.590G>A (rs1799930) |
p.Phe37= p.Tyr94= p.Arg197Gln |
Slow |
YES |
||
NAT2*6E |
c.481C>T (rs1799929) c.590G>A (rs1799930) |
p.Leu161= p.Arg197Gln |
Slow |
YES |
||
NAT2*6F |
c.590G>A (rs1799930) c.803A>G (rs1208) |
p.Lys268Arg |
|
NO |
||
NAT2*6G |
c.282C>T (rs1041983) c.518A>G c.590G>A (rs1799930) |
p.Tyr94= p.Lys173Arg p.Arg197Gln |
|
NO |
||
NAT2*6H |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.766A>G (rs55700793) |
p.Tyr94= p.Arg197Gln p.Lys256Glu |
|
YES |
||
NAT2*6I |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.838G>A (rs56393504) c.857G>A (rs1799931) |
p.Tyr94= p.Arg197Gln p.Val280Met p.Gly286Glu |
|
NO |
||
NAT2*6J |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.857G>A (rs1799931) |
p.Tyr94= p.Arg197Gln p.Gly286Glu |
|
NO |
||
NAT2*6K |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.638C>T (rs138707146) |
p.Tyr94= p.Arg197Gln p.Pro213Leu |
|
YES |
||
NAT2*6L |
c.282C>T (rs1041983) c.345C>T (rs45532639) c.590G>A (rs1799930) |
p.Tyr94= p.Asp115= p.Arg197Gln |
|
YES |
||
NAT2*6M |
c.152G>T (rs72466457) c.282C>T (rs1041983) c.590G>A (rs1799930) |
p.Gly51Val p.Tyr94= p.Arg197Gln |
|
YES |
||
NAT2*6N |
c.282C>T (rs1041983) c.481C>T (rs1799929) c.590G>A (rs1799930) |
p.Tyr94= p.Leu161= p.Arg197Gln |
|
NO |
||
NAT2*6Of |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.838G>A (rs56393504) |
p.Tyr94= p.Arg197Gln p.Val280Met |
|
YES |
||
NAT2*6Pf |
c.403C>G (rs12720065) c.590G>A (rs1799930) |
p.Leu135Val p.Arg197Gln |
|
YES |
||
NAT2*6Qf |
c.282C>T (rs1041983) c.308C>T c.590G>A (rs1799930) |
p.Tyr94= p.Thr103Ile p.Arg197Gln |
|
NO |
||
NAT2*6Rf |
c.282C>T (rs1041983) c.481C>T (rs1799929) c.590G>A (rs1799930) c.803A>G (rs1208) |
p.Tyr94= p.Leu161= p.Arg197Gln p.Lys268Arg |
|
NO |
||
NAT2*6Sf |
c.590G>A (rs1799930) c.857G>A (rs1799931) |
p.Arg197Gln p.Gly286Glu |
|
NO |
||
NAT2*6Tf |
c.481C>T (rs1799929) c.590G>A (rs1799930) c.857G>A (rs1799931) |
p.Leu161= p.Arg197Gln p.Gly286Glu |
|
NO |
||
NAT2*6Uf |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.579G>T (rs144176822) |
p.Tyr94= p.Arg197Gln p.Thr193= |
|
NO |
||
NAT2*6Vf |
c.403C>G (rs12720065) c.590G>A (rs1799930) c.838G>A (rs56393504) |
p.Leu135Val p.Arg197Gln p.Val280Met |
|
NO |
||
NAT2*6Wf |
c.282C>T (rs1041983) c.590G>A (rs1799930) c.803A>G (rs1208) c.857G>A (rs1799931) |
p.Tyr94= p.Arg197Gln p.Lys268Arg p.Gly286Glu |
|
NO |
||
|
|
|||||
NAT2*7A |
c.857G>A (rs1799931) |
p.Gly286Glu |
Slow; Substrate dependent? |
YES |
||
NAT2*7B |
c.282C>T (rs1041983) c.857G>A (rs1799931) |
p.Tyr94= p.Gly286Glu |
Slow; Substrate dependent? |
YES |
||
NAT2*7C |
c.282C>T (rs1041983) c.803A>G (rs1208) c.857G>A (rs1799931) |
p.Tyr94= p.Lys268Arg p.Gly286Glu |
|
YES |
||
NAT2*7D |
c.191G>A (rs1801279) c.282C>T (rs1041983) c.857G>A (rs1799931) |
p.Arg64Gln p.Tyr94= p.Gly286Glu |
|
NO |
||
NAT2*7Ef |
c.282C>T (rs1041983) c.481C>T (rs1799929) c.857G>A (rs1799931) |
p.Tyr94= p.Leu161= p.Gly286Glu |
|
NO |
||
NAT2*7Ff |
c.282C>T (rs1041983) c.481C>T (rs1799929) c.803A>G (rs1208) c.857G>A (rs1799931) |
p.Tyr94= p.Leu161= p.Lys268Arg p.Gly286Glu |
|
NO |
||
NAT2*7Gf |
c.226T>G c.282C>T (rs1041983) c.857G>A (rs1799931) |
p.Tyr76Asp p.Tyr94= p.Gly286Glu |
|
NO |
||
|
|
|||||
NAT2*10 |
c.499G>A (rs72554617) |
p.Glu167Lys |
Slow; Substrate dependent? |
YES |
||
|
|
|||||
NAT2*11A |
c.481C>T (rs1799929) |
p.Leu161= |
Rapid |
YES |
||
NAT2*11B |
c.481C>T (rs1799929) c.859del |
p.Leu161= p.Ser287Profs*59 |
|
Discontinued |
||
|
|
|||||
NAT2*12A |
c.803A>G (rs1208) |
p.Lys268Arg |
Rapid |
YES |
||
NAT2*12B |
c.282C>T (rs1041983) c.803A>G (rs1208) |
p.Tyr94= p.Lys268Arg |
Rapid |
YES |
||
NAT2*12C |
c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Leu161= p.Lys268Arg |
Rapid |
YES |
||
NAT2*12D |
c.364G>A (rs4986996) c.803A>G (rs1208) |
p.Asp122Asn p.Lys268Arg |
Slow |
YES |
||
NAT2*12E |
c.282C>T (rs1041983) c.578C>T (rs79050330) c.803A>G (rs1208) |
p.Tyr94= p.Thr193Met p.Lys268Arg |
|
YES |
||
NAT2*12F |
c.622T>C (rs56387565) c.803A>G (rs1208) |
p.Tyr208His p.Lys268Arg |
|
YES |
||
NAT2*12G |
c.609G>T (rs45618543) c.803A>G (rs1208) |
p.Glu203Asp p.Lys268Arg |
|
YES |
||
NAT2*12H |
c.403C>G (rs12720065) c.803A>G (rs1208) |
p.Leu135Val p.Lys268Arg |
|
YES |
||
NAT2*12I |
c.228C>T (rs72466459) c.803A>G (rs1208) |
p.Tyr76= p.Lys268Arg |
|
YES |
||
NAT2*12J |
c.29C>T (rs72466456) c.803A>G (rs1208) |
p.Ile10Thr p.Lys268Arg |
|
YES |
||
NAT2*12Kf |
c.472A>C (rs139351995) c.803A>G (rs1208) |
p.Ile158Leu p.Lys268Arg |
|
NO |
||
NAT2*12Lf |
c.665T>G c.803A>G (rs1208) |
p.Phe222Cys p.Lys268Arg |
|
NO |
||
NAT2*12Mf |
c.282C>T (rs1041983) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Tyr94= p.Leu161= p.Lys268Arg |
|
NO |
||
NAT2*12Nf |
c.121A>T (rs149283608) c.803A>G (rs1208) |
p.Asn41Tyr p.Lys268Arg |
|
NO |
||
NAT2*12Of |
c.29T>C (rs72466456) c.609G>T (rs45618543) c.803A>G (rs1208) |
p.Ile10Thr p.Glu203Asp p.Lys268Arg |
|
NO |
||
NAT2*12Pf |
c.472A>C (rs139351995) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Ile158Leu p.Leu161= p.Lys268Arg |
|
NO |
||
NAT2*12Qf |
c.33C>A c.803A>G (rs1208) |
p.Gly11= p.Lys268Arg |
|
NO |
||
NAT2*12Rf |
c.518A>G c.609G>T (rs45618543) c.803A>G (rs1208) |
p.Lys173Arg p.Glu203Asp p.Lys268Arg |
|
NO |
||
NAT2*12Sf |
c.33C>A c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Gly11= p.Leu161= p.Lys268Arg |
|
NO |
||
|
|
|||||
NAT2*13A |
c.282C>T (rs1041983) |
p.Tyr94= |
Rapid |
YES |
||
NAT2*13B |
c.282C>T (rs1041983) c.578C>T (rs79050330) |
p.Tyr94= p.Thr193Met |
|
NO |
||
NAT2*13Cf |
c.282C>T (rs1041983) c.665T>G |
p.Tyr94= p.Phe222Cys |
|
NO |
||
NAT2*13Df |
c.282C>T (rs1041983) c.766A>G (rs55700793) |
p.Tyr94= p.Lys256Glu |
|
NO |
||
NAT2*13Ef |
c.282C>T (rs1041983) c.641C>T |
p.Tyr94= p.Thr214Ile |
|
NO |
||
NAT2*13Ff |
c.282C>T (rs1041983) c.838G>A (rs56393504) |
p.Tyr94= p.Val280Met |
|
NO |
||
NAT2*13Gf |
c.282C>T (rs1041983) c.472A>C (rs139351995) |
p.Tyr94= p.Ile158Leu |
|
NO |
||
NAT2*13Hf |
c.33C>A c.282C>T (rs1041983) |
p.Gly11= p.Tyr94= |
|
NO |
||
|
|
|||||
NAT2*14A |
c.191G>A (rs1801279) |
p.Arg64Gln |
Slow |
YES |
||
NAT2*14B |
c.191G>A (rs1801279) c.282C>T (rs1041983) |
p.Arg64Gln p.Tyr94= |
Slow |
YES |
||
NAT2*14C |
c.191G>A (rs1801279) c.341T>C (rs1801280) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Arg64Gln p.Ile114Thr p.Leu161= p.Lys268Arg |
Slow |
YES |
||
NAT2*14D |
c.191G>A (rs1801279) c.282C>T (rs1041983) c.590G>A (rs1799930) |
p.Arg64Gln p.Tyr94= p.Arg197Gln |
Slow |
YES |
||
NAT2*14E |
c.191G>A (rs1801279) c.803A>G (rs1208) |
p.Arg64Gln p.Lys268Arg |
Slow |
YES |
||
NAT2*14F |
c.191G>A (rs1801279) c.341T>C (rs1801280) c.803A>G (rs1208) |
p.Arg64Gln p.Ile114Thr p.Lys268Arg |
Slow |
YES |
||
NAT2*14G |
c.191G>A (rs1801279) c.282C>T (rs1041983) c.803A>G (rs1208) |
p.Arg64Gln p.Tyr94= p.Lys268Arg |
Slow |
YES |
||
NAT2*14H |
c.191G>A (rs1801279) c.282C>T (rs1041983) c.683C>T (rs45518335) |
p.Arg64Gln p.Tyr94= p.Pro228Leu |
|
YES |
||
NAT2*14I |
c.191G>A (rs1801279) c.481C>T (rs1799929) c.803A>G (rs1208) |
p.Arg64Gln p.Leu161= p.Lys268Arg |
|
YES |
||
NAT2*14Jf |
c.191G>A (rs1801279) c.282C>T (rs1041983) c.633G>A |
p.Arg64Gln p.Tyr94= p.Thr211= |
|
NO |
||
NAT2*14Kf |
c.191G>A (rs1801279) c.282C>T (rs1041983) c.838G>A (rs56393504) |
p.Arg64Gln p.Tyr94= p.Val280Met |
|
NO |
||
NAT2*14Lf |
c.7A>G (rs200893121) c.191G>A (rs1801279) c.282C>T (rs1041983) |
p.Ile3Val p.Arg64Gln p.Tyr94= |
|
NO |
||
|
|
|||||
NAT2*17 |
c.434A>C (rs72554616) |
p.Gln145Pro |
Slow |
NO |
||
NAT2*18 |
c.845A>C (rs56054745) |
p.Lys282Thr |
Rapid |
NO |
||
NAT2*19 |
c.190C>T (rs1805158) |
p.Arg64Trp |
Slow |
YES |
||
NAT2*20 |
c.600A>G (rs72466461) |
p.Glu200= |
|
YES |
||
NAT2*21 |
c.458C>T (rs72466460) |
p.Thr153Ile |
|
YES |
||
NAT2*22f |
c.609G>T (rs45618543) |
p.Glu203Asp |
|
NO |
||
NAT2*23f |
c.70T>A (rs45477599) |
p.Leu24Ile |
|
NO |
||
NAT2*24f |
c.403C>G (rs12720065) |
p.Leu135Val |
|
NO |
||
NAT2*25f |
c.665T>G |
p.Phe222Cys |
|
NO |
||
NAT2*26f |
c.809T>C |
p.Ile270Thr |
|
NO |
||
NAT2*27f |
c.589C>T |
p.Arg197Ter |
|
YES |
||
NAT2*28 |
c.622T>C (rs56387565) |
p.Tyr208His |
|
NO |
||
(a) Human
(b) The legacy
reference allele sequence (NAT2*4) is
published in Genbank
Assession Number X14672. NAT2*4 is the most common “rapid” allele globally. However, it is not the
most common occurring allele in all populations.
(c) Signature SNP for
each allelic group is shown in red font. SNPs should be identified by designating "A" of the
(d) Phenotype
assignments reflect most current research but are not necessarily a consensus
of all research papers. Evidence also exists for heterogeneity within the
“slow” acetylator phenotype. For comprehensive reviews, see references [52-56]. Although additional SNPs have been identified
outside the open reading frame (e.g., see refs [31,32,57]),
they will not be named until a functional effect is observed.
(e) The SNPs on
(f) Haplotypes
predicted from genotypes by computational PHASE analysis.
For enquiries, please contact Dr. Sotiria Boukouvala (sboukouv@mbg.duth.gr).
[1]
Deguchi, T.
Sequences and expression of alleles of polymorphic arylamine N-acetyltransferase of human liver. J. Biol. Chem. 267:18140-18147, 1992.
[2]
Blum, M.,
Demierre, A., Grant, D.M., Heim, M. and Meyer, U.A. Molecular mechanism of
slow acetylation of drugs and carcinogens in humans. Proc. Natl. Acad. Sci. USA 88:5237-5241, 1991.
[3]
Vatsis, K.P.,
Martell, K.J. and Weber, W.W. Diverse point mutations in the human gene for
polymorphic N-acetyltransferase. Proc. Natl. Acad. Sci. USA 88:6333-6337, 1991.
[4]
Blum, M.,
Grant, D.M., McBride, W., Heim, M. and Meyer, U.A. Human arylamine N-acetyltransferase genes: isolation, chromosomal
localization, and functional expression.
[5]
Ebisawa, T.
and Deguchi. T. Structure and restriction fragment length polymorphism of
genes for human liver arylamine N-acetyltransferases.
Biochem. Biophys. Res. Commun.
177:1252-1257, 1991.
[6]
Ohsako, S.
and Deguchi, T. Cloning and expression of cDNAs for polymorphic and
monomorphic arylamine N-acetyltransferases
from human liver. J. Biol. Chem. 265:4630-4634,
1990.
[7]
Grant, D.M.,
Blum, M., Demierre, A. and Meyer, U.A. Nucleotide sequence of an intronless
gene for a human arylamine N-acetyltransferase
related to polymorphic drug acetylation. Nucleic Acids Res. 17:3978,
1989.
[8]
Hickman, D.
and Sim, E. N-Acetyltransferase
polymorphism: Comparison of phenotype and genotype in humans. Biochem. Pharmacol. 42:1007-1014, 1992.
[9]
Hein, D.W., Ferguson, R.J.,
Doll, M.A., Rustan, T.D. and Gray, K. Molecular genetics of human
polymorphic N-acetyltransferase:
enzymatic analysis of 15 recombinant human wild-type, mutant, and chimeric
[10]
Hein, D.W., Doll, M.A.,
Rustan, T.D. and Ferguson, R.J. Metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by 16 recombinant
human
[11]
Hickman, D., Palamanda, J.R.,
Unadkat, J.D. and Sim, E. Enzyme kinetic properties of human recombinant
arylamine N-acetyltransferase 2
allotypic variants expressed in Escherichia
Coli. Biochem. Pharmacol. 50:697-703, 1995.
[12]
Fretland, A.J., Leff, M.A.,
Doll, M.A. and Hein, D.W. Functional characterization of human N-acetyltransferase 2 (
[13]
Svensson,
C.K. and Hein, D.W. Phenotypic and genotypic characterization of N-acetylation. In: Drug Metabolism and Transport: Molecular Methods and Mechanisms.
L.H. Lash, Editor, Methods in
Pharmacology and Toxicology Series, The Humana Press, Totowa, NJ, pp.
173-195, 2005.
[14]
Hein, D.W. N-acetyltransferase
2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder
cancer risk. Oncogene 25:1649-1658, 2006.
[15]
Hein, D.W., Fretland, A.J.
and Doll, M.A. Effects of single nucleotide polymorphisms in human N-acetyltransferase 2 on metabolic
activation (O-acetylation) of
heterocyclic amine carcinogens. Int. J.
Cancer 119:1208-1211, 2006.
[16]
Zang, Y., Zhao, S., Doll, M.A.,
States, J.C. and Hein, D.W. Functional characterization of the A411T
(L137F) and G364A (D122N) genetic polymorphisms in human N-acetyltransferase 2. Pharmacogenet.
Genomics 17:37-45, 2007.
[17]
Zang, Y., Doll, M.A., Zhao,
S., States, J.C. and Hein, D.W. Functional characterization of single
nucleotide polymorphisms and haplotypes of human N-acetyltransferase 2. Carcinogenesis
28:1665-1671, 2007.
[18]
Hickman, D.,
Risch, A., Camilleri, J.P. and Sim, E. Genotyping human polymorphic
arylamine N-acetyltransferase:
identification of new slow allotypic variants. Pharmacogenetics 2:217-226,
1992.
[19]
Lin, J.J.,
Han, C.Y., Lin B.K., and Hardy, S. Slow acetylator mutations in the human
polymorphic N-acetyltransferase gene
in 786 Asians, Blacks, Hispanics, and Whites: application to metabolic
epidemiology. Am. J. Hum. Genet.
52:827-834, 1993.
[20]
Abe, M.,
Deguchi, T. and Suzuki, T. The structure and characteristics of a fourth
allele of polymorphic N-acetyltransferase
gene found in the Japanese population. Biochem. Biophys. Res. Comm. 191:811-816, 1993.
[21]
Ferguson,
R.J., Doll, M.A., Rustan, T.D., Gray, K. and Hein, D.W. Cloning,
expression, and functional characterization of two mutant (
[22]
Cascorbi, I.,
Drakoulis, N., Brockmoller, J., Mauer, A., Sperling, K. and Roots, I.
Arylamine N-acetyltransferase (
[23]
Martinez, C.,
Agundez, J.A.G., Olivera, M., Martin, R., Ladero, J.M. and Benitez, J. Lung
cancer and mutations at the polymorphic
[24]
Agundez,
J.A.G., Olivera, M., Ladero, J.M., Lescure-Rodriguez, A., Ledesma, M.C.,
Diaz-Rubio, M., Meyer, U.A. and Benitez, J. Increased risk for hepatocellular
carcinoma in
[25]
Agundez,
J.A.G., Olivera, M., Martinez, C., Ladero, J.M. and Benitez, J.
Identification and prevalence study of 17 allelic variants of the human
[26]
Leff, M.A.,
Fretland, A.J., Doll, M.A. and Hein, D.W. Novel human N-acetyltransferase 2 alleles that differ in mechanism for slow
acetylator phenotype. J. Biol. Chem. 274:34519-34522,
1999.
[27]
Woolhouse,
N.M., Qureshi, M.M. and Bayoumi, R.A. A new mutation C759T in the polymorphic
N-acetyltransferase (
[28]
Anitha, A.
and Banerjee, M. Arylamine N-acetyltransferase
2 polymorphism in the ethnic populations of
[29]
Tanira, M.O.M., Simsek, M., Al Balushi, K., Al Lawatia, K., Al
Barawani, H. and Bayoumi, R.A. Distribution of arylamine N-acetyltransferase 2 (
[30] Patin, E., Barreiro, L.B.,
Sabeti, P.C., Austerlitz, F., Luca, F., Sajantila, A., Behar, D.M., Semino, O.,
Sakuntabhai, A., Guiso, N., Gicquel, B., McElreavey, K., Harding, R.M., Heyer,
E. and Quintana-Murci, L. Deciphering the ancient and complex evolutionary
history of human N-acetyltransferase
genes. Am. J. Hum. Genet. 78:423-436, 2006.
[31]
Patin, E., Harmant, C.,
Kidd, K.K., Kidd, J., Froment, A., Mehdi, S.Q., Sica, L., Heyer, E. and Qintana-Murci,
L. Sub-Saharan African coding sequence variation and haplotype diversity at
the
[32]
Sabbagh, A., Langaney, A.,
Darlu, P., Gerard, N., Krishnamoorthy, R. and Poloni, E.S. Worldwide
distribution of
[33]
Teixeira, R.L.F., Silva Jr,
F.P., Silveira, A.R., Cabello, P.H., Mendonca-Lima, L., Rabahi, M.F., Kritski,
A.L., Mello, F.C.Q., Suffys, P.N., Miranda, A.B. and Santos, A.R. Sequence analysis of NAT2 gene in Brazilians:
identification of undescribed single nucleotide polymorphisms and molecular
modeling of the N-acetyltransferase 2
protein structure. Mut. Res. 683:43-49,
2010.
[34]
Chauhan,
N. and Padh, H. Variants of NAT2
polymorphisms: Intra and inter-ethnic differences. African J. Biotechnol. 13:4639-4646, 2014.
[35]
Khan, N., Pande, V., &
Das, A. NAT2 sequence polymorphisms and acetylation profiles in
Indians. Pharmacogenomics. 14:289-303, 2013.
[36]
Hein,
D.W. and Doll, M.A. Enzymatic characterization of novel human
[37]
Dandara, C.,
Masimirembwa, C.M., Magimba, A., Kaaya, S., Sayi, J., Sommers, D.K., Snyman,
J.R. and Hasler, J.A. Arylamine N-acetyltransferase
(
[38]
Matimba, A., Del-Favero, J., Van Broeckhoven, C.
and Masimirembwa, C. Novel
variants of major drug metabolizing enzyme genes in diverse African populations
and their predicted functional effects. Hum.
Genom. 3:169-190, 2009.
[39]
Teixeira, R.L., Morato,
R.G., Cabello, P.H., Muniz, L.M.K., Moreira, A.S.R., Kritski, A.L., Mello, F.C.Q.,
Suffys, P.N., Miranda, A.B. and Santos, A.R. Genetic polymorphisms of NAT2,
CYP2E1, GST enzymes and the occurrence of antituberculosis drug-induced
hepatitis in Brazilian TB patients. Mem.
Inst. Oswaldo Cruz 106:716-724, 2011.
[40]
Mortensen, H.M., Froment,
A., Lema, G., Bodo, J.M., Ibrahim, M., Nyambo, T.B., Omar, S.A., Tishkoff, S.A.
Characterization of genetic variation and natural selection at the arylamine N-acetyltransferase genes in global
human populations. Pharmacogenomics 12:1545-1558, 2011.
[41]
Sekine, A.,
Saito, S., Iida, A., Mitsunobu, Y., Higuchi, S., Harigae, S. and Nakamura, Y.
Identification of single-nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes
[42]
Cascorbi, I., Brockmoller, J.,
Bauer, S., Reum, T. and Roots, I.
[43]
Bolt, H.M., Selinski, S., Dannappel, D.,
Blaszkewicz, M. and Golka, K. Re-investigation
of the concordance of human
[44]
Agundez,
J.A., Martinez, C., Olivera, M., Ledesma, M.C., Ladero, J.M. and Benitez, J.
Molecular analysis of the arylamine N-acetyltransferase
polymorphism in a Spanish population. Clin. Pharmacol. Ther.
56:202-209, 1994.
[45]
Bell, D.A.,
Taylor, J.A., Butler, M.A., Stephens, E.A., Wiest, J., Brubaker, L.H.,
Kadlubar, F.F. and Lucier, G.W. Genotype/phenotype discordance for human
arylamine N-acetyltransferase (
[46]
Delomenie, C.,
Sica, L., Grant, D.M., Krishnamoorthy, R. and Dupret, J.M. Genotyping of
the polymorphic N-acetyltransferase (
[47] Agundez, J., Golka, K., Martinez,
C., Selinski, S., Blaszkewicz, M. and Garcia-Martin, E. Unraveling
ambiguous
[48]
Lin, H.J.,
Han, C.Y., Lin, B.K. and Hardy, S. Ethnic distribution of slow acetylator
mutations in the polymorphic N-acetyltransferase
(
[49]
Shishikura,
K., Hohjoh, H. and Tokunaga, K. Novel allele containing 190C>T
nonsynonymous substitution in the N-acetyltransferase
(
[50]
Lee, S.Y.,
Lee, K.A., Ki, C.S., Kwon, O.J., Kim, H.J., Chung, M.P., Suh, G.Y. and Kim,
J.W. Complete sequencing of a genetic polymorphism in
[51]
Zhu, Y.,
Doll, M.A. and Hein, D.W. Functional genomics of C190T single nucleotide
polymorphism in human N-acetyltransferase
2. Biol. Chem. 383:983-987, 2002.
[52]
Grant, D.M.,
Hughes, N.C., Janezic, S.A., Goodfellow, G.H., Chen, H.J., Gaedigk, A., Yu,
V.L. and Grewal, R. Human acetyltransferase
polymorphisms. Mutat. Res. 376:61-70, 1997.
[53]
Butcher,
N.J., Boukouvala, S., Sim, E. and Minchin, R.F. Pharmacogenetics of the
arylamine N-acetyltransferases. Pharmacogenomics J. 2:30-42, 2002.
[54]
Hein, D.W.
Molecular genetics and function of
[55]
Boukouvala, S. and Fakis, G. Arylamine N-acetyltransferases:
What we learn from genes and genomes. Drug
Metab. Rev. 37:511-564, 2005.
[56]
Sim, E., Westwood, I. and Fullam, E. Arylamine N-acetyltransferases. Expert Opin. Drug Metab. Toxicol. 3:169-184, 2007.
[57]
Yuliwulandari, R., Sachrowardi,
Q., Nishida, N., Takasu, M., Batubara, L., Susmiarsih, T.P., Rochani, J.T.,
Wikaningrum, R., Miyashita, R., Miyagawa, T., Sofro, A.S. and Tokunaga, K.
Polymorphisms of promoter and coding regions of the arylamine N-acetyltransferase 2 (
[58] Hein, D.W., Boukouvala, S., Grant, D.M., Minchin, R.F. and Sim, E. Changes in consensus arylamine N-acetyltransferase (
[59] Verhagen, L.M., Coenen, M.J.,
López,D., García, J.F., de Waard, J.H., Schijvenaars, M.M., Hermans, P.W. and
Aarnoutse, R.E. Full-gene sequencing analysis of NAT2 and its
relationship with isoniazid pharmacokinetics in Venezuelan children with
tuberculosis. Pharmacogenomics 15:285-96, 2014.
[60] Podgorná,
E., Diallo, I., Vangenot, C., Sanchez-Mazas, A., Sabbagh, A., Černý,
V. and Poloni, E.S. Variation in NAT2 acetylation phenotypes is
associated with differences in food-producing subsistence modes and ecoregions
in Africa. BMC Evol. Biol. 15:263,
2015.
[61] Zahra, M.A., Kandeel, M.,
Aldossary, S.A. and Al-Taher, A. Study on genotyping polymorphism and
sequencing of N-Acetyltransferase 2 (NAT2)
among Al-Ahsa Population. Biomed. Res. Int. 2020:8765347, 2020.
[62] Lopes, M.Q.P., Teixeira,
R.L.F., Cabello, P.H., Nery, J.A.C., Sales, AM., Nahn JR., E.P., Moreira, M.V.,
Stahlke, E.V.R., Possuelo, L.G., Rossetti, M.L.R., Rabahi, M.F., Silva, L.F.M.,
Leme, P.A., Woods, W.J., Nobre, M.L., de Oliveira, M.L.W., Narahashi, K., Cavalcanti,
M., Suffys, P.N., Boukouvala, S., Gallo, M.E.N. and Santos, A.R. Human N-acetyltransferase 2 (NAT2) gene
variability in Brazilian populations from different geographical areas. Front.
Pharmacol. 14:1278720, 2023.
[63] Luca, F., Bubba, G., Basile,
M., Brdicka, R., Michalodimitrakis, E., Rickards, O., Vershubsky, G.,
Quintana-Murci, L., Kozlov, A.I. and Novelletto, A. Multiple advantageous
amino acid variants in the NAT2 gene in human populations. PLoS One.
3(9):e3136, 2008.